31 December 2007

About

Ahmed Reza Rafsanzani

vsco | instagaram
 facebook | twitter | plurk | linkedin | last.fm | kaskus
rza272[at]gmail.com

***
bytheway
saya punya blog lain
https://medreza.wordpress.com/


15 December 2007

Depkominfo Siapkan Internet Gratis Sekolah

AKARTA - Depkominfo serius meningkatkan penetrasi internet di Indonesia. Mereka telah mempersiapkan program internet gratis di sekolah dengan memaksimalkan dana CSR perusahaan BUMN.

"Pengguna internet di Indonesia baru mencapai 8 persen dari total penduduk. Sementara pengguna internet berlangganan hanya 1 persen. Sedangkan pelanggan internet rumahan mencapai 4,1 persen saja. Penggunaan internet banyak diakses dari tempat-tempat umum seperti warnet, yang biasanya disediakan oleh masyarakat atau instansi pendidikan," ujar Memkominfo Muhammad Nuh pada jawaban tertulisnya yang ditujukan kepada anggota DPR saat rapat kerja Komisi I, beberapa waktu lalu.

Saat dikonfirmasi seusai acara, dia menegaskan bahwa dana program akan dialokasikan dari biaya corporate social responsibility (CSR) perusahaan-perusahaan milik negara, termasuk perusahaan telekomunikasi. "Besarannya masih dikalkulasikan. Yang pasti kurang dari 50 persen," tandas Nuh.

Nuh juga mengungkapkan bahwa kebijakan program ini dibagi menjadi dua, sisi penyediaan dan sisi kebutuhan. "Sisi penyediaan dimaksud dengan ketersediaan internet secara merata, berkualitas dan tarif terjangkau. Bahkan pemerintah sedang mengupayakan ketersediaan internet tanpa biaya (gratis) untuk kalangan SMU melalui kerja sama dengan CSR BUMN dan penyelenggara internet (ISP)," jelasnya.

Sedangkan sisi kebutuhan akan diakomodir dengan upaya penggunaan internet yang produktif meliputi penyediaan literasi, mulai dari hal mendasar seperti cara menggunakan komputer, akses internet dan email sampai kebutuhan paling advanced, misalnya set-up terminal, set-up jaringan dan lainnya.

Hal ini ternyata sejalan dengan saran beberapa anggota dewan Komisi I yang mengharapkan dana CSR perusahaan, khususnya BUMN telekomunikasi, tidak hanya berbentuk bantuan sembako, uang tunai atau segala macam bantuan yang sifatnya tidak mendidik.

Program ini akan mulai dijalankan pada kuartal pertama tahun 2008.

6 December 2007

Misteri di balik rompi anti-peluru

Rompi anti-peluru adalah pakaian pelindung untuk meminimalkan cidera karena terkena peluru. Biasanya dipakai oleh personil militer dan polisi dalam tugas-tugas tertentu. Bahan untuk rompi anti-peluru diantaranya logam (baja atau titanium), keramik atau jenis polimer yang dapat memberikan perlindungan ekstra terhadap bagian-bagian vital pemakainya.

Rompi ini melindungi pemakainya dengan cara menahan laju peluru. Peluru dihentikan sebelum berpenetrasi ke dalam tubuh. Ketika rompi menahan penetrasi peluru, dorongan dari peluru direduksi dengan menyebarkan momentumnya ke seluruh tubuh. Pemakai tetap akan merasakan energi kinetik dari peluru, hal ini dapat menyebabkan luka memar, bengkak atau luka dalam yang cukup serius.

Salah satu polimer yang dikembangkan sebagai bahan rompi anti-peluru modern adalah kevlar. Kevlar dikenal juga sebagai twaron dan poli-parafenilen tereftalamida, yaitu suatu serat sintetik yang kekuatannya lima kali kekuatan tembaga, dengan berat yang sama. Kevlar sangat tahan terhadap panas dan terdekomposisi di atas 400 oC tanpa meleleh. Kevlar ditemukan oleh perusahaan DuPont pada awal 1960-an, hasil kerja dari Stephanie Kwolek. Kevlar merupakan merk dagang yang terdaftar oleh E.I. de Pont de Nemours and Company.

Sifat-sifat

Kevlar adalah salah satu tipe aramida, yang terdiri dari rantai panjang polimer dengan orientasi paralel. Aramida sendiri merupakan suatu serat sintetik yang berupa rantai panjang poliamida sintetik dengan paling sedikit 85 persen sambungan amidanya menempel secara langsung pada dua rantai aromatik (gugus amida dan gugus aromatik berselang-seling). Kekuatan kevlar diperoleh dari ikatan hidrogen intra-molekuler dan interaksi tumpukan aromatik-aromatik antar lembaran. Interaksi-interaksi ini lebih kuat daripada interaksi Van der Waals yang terdapat dalam polimer-polimer sintetik lain dan serat-serat seperti dyneema (serat yang terbuat dari rantai polietilena yang sangat panjang, yang tersusun searah). Keberadaan garam-garam dan impuritis lain, biasanya kalsium, dapat mengganggu interaksi pada lembaran polimer dan harus dihilangkan dalam proses produksi. Kevlar terdiri dari molekul-molekul yang relatif rigid, yang membentuk struktur seperti lembaran-lembaran datar pada protein sutra.

Dari sifat-sifat tersebut diperoleh serat dengan kekuatan mekanik yang tinggi dan tahan terhadap panas.

Kevlar mempunyai gugus-gugus bebas yang dapat membentuk ikatan hidrogen pada bagian luarnya, sehingga dapat mengabsorp air dan mempunyai sifat ‘basah’ yang baik. Hal ini juga menjadikannya terasa lebih alami dan ‘lengket’ dibandingkan dengan polimer pada umumnya, seperti polietilen.

Kelemahan utama dari kevlar adalah dapat terdekomposisi pada kondisi basa atau ketika terpapar klorin. Meskipun dapat mendukung tensile stress yang besar, kevlar tidak cukup kuat di bawah tekanan kompresif. Untuk mengatasi masalah ini, kevlar sering digunakan secara bersama dengan bahan yang kuat terhadap tekanan kompresif.

Produksi

Kevlar disintesis dari monomer 1, 4-fenildiamin (para-fenilendiamin) dan tereftaloil klorida. Hasilnya adalah polimer aromatik amida (aramida) dengan cincin benzena dan gugus amida yang berselang-seling. Dengan langkah produksi ini, diperoleh lembaran polimer yang tergabung secara acak. Untuk membuat kevlar, bahan-bahan dilarutkan dan diaduk, menghasilkan rantai polimer yang berorientasi membentuk serat.

Kevlar berharga mahal karena sulitnya pemakaian asam sulfat pekat dalam produksinya. Kondisi yang ekstrim ini dibutuhkan untuk menjaga ketaklarutan polimer yang tinggi dalam larutan selama sintesis dan pengadukan.

Bahan anti-peluru lain yang dikembangkan setelah kevlar diantaranya DSM's Dyneema, Akzo's Twaron, Toyobo's Zylon (yang kontroversial, studi terbaru melaporkan, bahan ini terdegradasi dengan cepat sehingga pemakainya tidak terlindungi seperti yang diharapkan), atau Honeywell's GoldFlex - semuanya merupakan merk dagang. Bahan-bahan yang baru ini lebih ringan, tipis, dan lebih tahan dibanding kevlar, namun harganya lebih mahal. (Dari berbagai sumber).

5 December 2007

Air, Si Molekul Ajaib





Air, yang merupakan sebuah zat cair istimewa untuk kehidupan, menutupi dua pertiga dari permukaan bumi. Tubuh setiap makhluk hidup di bumi terbentuk dari cairan yang sangat istimewa ini dengan perbandingan antara 50% - 95%. Dari bakteri yang hidup di sumber air panas dengan suhu yang mendekati titik didih air, sampai beberapa jenis lumut yang tumbuh pada gletser, kehidupan ada di setiap tempat dimana terdapat air, tanpa memandang suhu. Bahkan pada setetes air yang tergantung di ujung sebuah daun setelah hujan, ribuan mikroorganisme hidup muncul, bereproduksi, dan mati.

Tapi tahukah anda bahwa ternyata molekul air, yang merupakan dasar kehidupan di bumi, sangat sulit terbentuk. Pertama-tama, mari kita membayangkan molekul hidrogen dan oksigen, yang merupakan komponen air, dimasukkan ke dalam sebuah wadah kaca. Selanjutnya kita biarkan keduanya berada di wadah tersebut dalam jangka waktu yang sangat lama. Dalam waktu selama itu mungkin gas-gas ini belum membentuk air bahkan jika keduanya tetap berada dalam wadah tersebut selama ratusan tahun. Kalaupun terbentuk air, tidak akan lebih dari segelintir pada dasar wadah dan itupun akan terjadi dengan sangat lambat, bisa sampai ribuan tahun.

Penyebab mengapa air sangat lambat terbentuk pada kondisi-kondisi ini adalah suhu. Pada suhu kamar, oksigen dan air bereaksi sangat lambat.

Dalam keadaan bebas, oksigen dan hidrogen ditemukan sebagai molekul H2 dan O2. Untuk bergabung membentuk molekul air, keduanya harus bertubrukan. Sebagai hasil dari tubrukan ini, ikatan-ikatan yang membentuk molekul hidrogen dan oksigen melemah, sehingga tidak ada lagi penghalang untuk bergabungnya atom oksigen dan hidrogen. Suhu akan meningkatkan energi begitu juga kecepatan molekul-molekul ini, sehingga jumlah tubrukan yang terjadi meningkat. Akibatnya, reaksi yang terjadi dipercepat. Akan tetapi, sekarang ini, tidak ada lagi suhu yang cukup tinggi untuk membentuk air di bumi. Panas yang diperlukan untuk pembentukan air disuplai selama terbentuknya bumi ini, yang mana menghasilkan munculnya banyak air sebanyak yang menutupi tiga perempat permukaan bumi. Saat ini, air menguap dan naik ke atomosfir dimana kemudian dia menjadi dingin dan kembali ke bumi dalam bentuk hujan. Olehnya itu, jumlah air tidak bertambah tapi hanya mengalami siklus yang terus menerus.

Sifat-sifat air yang menakjubkan

Air memiliki banyak sifat kimiawi yang unik. Setiap molekul air terbentuk oleh kombinasi antara atom hidrogen dan oksigen. Cukup menarik bahwa kedua gas ini, satu mudah membakar dan yang lainnya mudah terbakar, bergabung membentuk sebuah cairan, dan lebih menariknya, cairan itu adalah air.

Sekarang, mari kita lihat secara ringkas bagaimana air terbentuk secara kimiawi. Muatan listrik air adalah nol, yakni bermuatan netral. Sekalipun begitu, karena ukuran atom oksigen dan hidrogen, komponen oksigen dari molekul air memiliki muatan yang sedikit negatif dan komponen hidrogennya sedikit bermuatan positif. Jika ada lebih dari satu molekul air yang bergabung, muatan positif dan negatif tersebut akan tarik-menarik membentuk sebuah ikatan yang sangat istimewa, yaitu "ikatan hidrogen". katan hidrogen merupakan sebuah ikatan yang sangat lemah dan memiliki masa yang sangat singkat. Durasi sebuah ikatan hidrogen adalah sekitar seper seratus milyar detik. Tetapi begitu sebuah ikatan putus, ikatan yang lainnya langsung terbentuk. Karenanya, molekul-molekul air saling menempel dengan rapat meskipun juga tetap mempertahankan bentuk cairnya karena molekul-molekulnya disatukan oleh sebuah ikatan lemah.

Ikatan hidrogen juga memungkinkan air untuk melawan perubahan suhu. Walaupun suhu udara meningkat secara tiba-tiba, suhu air hanya meningkat perlahan, dan demikian juga, jika suhu udara turun secara tiba-tiba, suhu air berkurang secara perlahan. Diperlukan perubahan suhu yang besar agar perubahan suhu air berlangsung cepat. Energi termal air yang sangat tinggi memiliki manfaat besar bagi kehidupan. Sebagai contoh sederhana, terdapat banyak air dalam tubuh kita. Jika air beradaptasi dengan perubahan suhu yang terjadi secara tiba-tiba di udara dengan laju perubahan yang sama, maka kita akan mengalami panas demam atau membeku secara tiba-tiba.

Begitu juga, air memerlukan energi termal yang sangat besar untuk menguap. Karena begitu banyak energi termal yang digunakan saat menguap, suhunya menurun. Sebagai contoh, lagi-lagi dari tubuh manusia, suhu normal tubuh adalah 36°C dan suhu tubuh tertinggi yang bisa ditolerir adalah 42°C. Selisih 6°C ini tentu sangat kecil dan bahkan beraktivitas beberapa jam saja di bawah sinar matahari bisa meningkatkan suhu tubuh sebesar itu. Sekalipun begitu, tubuh kita menghabiskan banyak energi termal melalui keringat, yakni, dengan menyebabkan air yang dikandungnya menguap, yang selanjutnya menyebabkan suhu tubuh menurun. Jika tubuh kita tidak memiliki mekanisme otomatis seperti ini, maka beraktivitas di bawah sinar matahari beberapa jam saja dapat berakibat fatal.

Ikatan hidrogen juga melengkapi air dengan sifat luar biasa lainnya, yaitu air lebih kental dalam wujud cair dibanding dalam wujud padat. Sebenarnya, hampir semua zat di bumi ini lebih kental dalam wujud padat dibanding dalam wujud cairnya. Akan tetapi, berbeda dengan zat-zat yang lain, air mengembang saat membeku. Ini karena ikatan hidrogen mencegah molekul-molekul air untuk berikatan satu sama lain dengan sangat rapat, sehingga banyak celah yang tersisa diantara molekul-molekul tersebut. Ikatan hidrogen terputus apabila air berada dalam wujud cair, sehingga menyebabkan atom-atom oksigen lebih berdekatan satu sama lain dan membentuk sebuah struktur yang lebih kental.

Ini juga yang menyebabkan es lebih ringan dari air. Umumnya, jika anda melelehkan logam manapun dan ke dalam lelehan tersebut dimasukkan beberapa lempeng logam yang sama, maka lempeng-lempeng ini akan tenggelam langsung ke dasar. Akan tetapi, pada air hal yang terjadi berbeda. Gunung es yang beratnya ribuan ton akan terapung di atas air seperti gabus. Manfaat apa yang diberikan oleh sifat air yang unik ini?

Mari kita menjawab pertanyaan ini dengan mengambil contoh sebuah sungai: Jika cuaca sangat dingin, air sungai tidak akan membeku seluruhnya, tapi hanya permukaannya saja yang membeku. Air mencapai wujud terberatnya pada suhu +4°C, dan segera setelah mencapai suhu ini, dia akan tenggelam ke dasar. Es terbentuk pada permukaan air sebagai sebuah lapisan. Di bawah lapisan ini, air masih terus mengalir, dan karena +4°C adalah suhu dimana organisme hidup bisa bertahan, maka kehidupan dalam air terus berlanjut.

Sifat khusus air yang sangat menarik

Kita semua tahu bahwa air mendidih pada suhu 100°C dan membeku pada suhu 0°C. Tetapi sebenarnya, pada kondisi normal, air seharusnya mendidih pada suhu +180°C bukan pada suhu 100°C. Mengapa?

Dalam tabel periodik, sifat-sifat dari unsur-unsur yang terdapat di dalam golongan yang sama bervariasi secara progresif dari unsur yang ringan sampai unsur yang berat. Fakta ini dapat dilihat dengan jelas pada senyawa-senyawa hidrogen. Senyawa dari unsur-unsur yang segolongan dengan oksigen dalam tabel periodik disebut sebagai "hidrida". Jadi air (H2O) adalah "oksigen hidrida". Hidrida dari unsur-unsur lain dalam golongan ini memiliki struktur molekul yang sama seperti molekul air.

Titik didih senyawa-senyawa ini berbeda-beda dan semakin meningkat dari unsur belerang ke unsur yang lebih berat; akan tetapi, titik didih air tidak mengikuti pola ini. Air (oksigen hidrida) mendidih pada suhu yang 80°C lebih rendah dari yang seharusnya. Situasi yang mengherankan lainnya juga terjadi pada titih beku air. Lagi-lagi, menurut orde dalam sistem periodik, air seharusnya membeku pada suhu -100°C. Akan tetapi, air tidak memenuhi kaidah ini dan membeku pada suhu 0°C, sebuah suhu yang 100°C lebih tinggi dari titik beku seharusnya. Hal ini tentu menimbulkan pertanyaan dalam benak kita seperti mengapa bukan hidrida lain, tapi hanya air (oksigen hidrida) yang tidak memenuhi kaidah dari sistem periodik ini?

Diterjemahkan dan diedit dari:

"The Miracle In The Atom" oleh Prof. Adnan Okta